Loading data into astir¶
Table of Contents:¶
0. Loading necessary libraries and define paths¶
[1]:
# !pip install -e ../../..
import os
import sys
module_path = os.path.abspath(os.path.join('../../..'))
if module_path not in sys.path:
sys.path.append(module_path)
module_path = os.path.abspath(os.path.join('../../../astir'))
if module_path not in sys.path:
sys.path.append(module_path)
%load_ext autoreload
%autoreload 2
[12]:
import yaml
import pandas as pd
import astir as ast
import numpy as np
import torch
[3]:
yaml_marker_path = "../../../astir/tests/test-data/jackson-2020-markers.yml"
design_mat_path = "../../../astir/tests/test-data/design.csv"
expression_mat_path = "../../../astir/tests/test-data/test_data.csv"
expression_dir_path = "../../../astir/tests/test-data/test-dir-read"
expression_loom_path = "../../../astir/tests/test-data/basel_100.loom"
expression_anndata_path="../../../astir/tests/test-data/adata_small.h5ad"
1. Starting Astir within python¶
The input dataset should represent protein expression in single cells. The rows should represent each cell (one row per cell) and the columns should represent each protein (one column per protein). A marker which maps the features (proteins) to cell type/state may is required. A design matrix is optional. If provided, it should be either np.array or pd.DataFrame.
The initialization of Astir requires input dataset input_expr as one of pd.DataFrame, Tuple[np.array, List[str], List[str]] and Tuple[SCDataset, SCDataset].
Note: dtype and random_seed are always customizable. dtype is default to torch.float64 and random_seed is default to 1234.
1.0 Loading marker dictionary and design matrix¶
Marker Dictionary¶
[4]:
with open(yaml_marker_path, "r") as stream:
marker_dict = yaml.safe_load(stream)
print(marker_dict)
{'cell_states': {'RTK_signalling': ['Her2', 'EGFR'], 'proliferation': ['Ki-67', 'phospho Histone'], 'mTOR_signalling': ['phospho mTOR', 'phospho S6'], 'apoptosis': ['cleaved PARP', 'Cleaved Caspase3']}, 'cell_types': {'stromal': ['Vimentin', 'Fibronectin'], 'B cells': ['CD45', 'CD20'], 'T cells': ['CD45', 'CD3'], 'macrophage': ['CD45', 'CD68'], 'epithelial(basal)': ['E-Cadherin', 'pan Cytokeratin', 'Cytokeratin 5', 'Cytokeratin 14', 'Her2'], 'epithelial(luminal)': ['E-Cadherin', 'pan Cytokeratin', 'Cytokeratin 7', 'Cytokeratin 8/18', 'Cytokeratin 19', 'Cytokeratin 5', 'Her2']}, 'hierarchy': {'immune': ['B cells', 'T cells', 'macrophage'], 'epithelial': ['epithelial(basal)', 'epithelial(luminal)']}}
Some notes:
The marker
marker_dictis not required wheninput_exprisTuple[SCDataset, SCDataset]. Otherwise, it is required to beDict[str, Dict[str, str]].The outer dictionary may have at most three keys:
cell_type,cell_stateandhierarchy.cell_typeandcell_statemaps to the corresponding dictionary which maps the name of cell type/state to protein features.hierarchymaps to the dictionary which indicates the cell type hierarchy.If the user is only intended to classify one of cell type and cell state, only the intended marker dictionary should be provided. So that marker_dict is one of
{"cell_state": {...}},{"cell_type": {...}}and{"cell_type": {...}, "cell_state": {...}}.The
hierarchydictionary should be included when the client tends to callAstir.assign_celltype_hierarchy()
Design matrix:¶
Note that the design matrix must have the same number of rows as there are number of cells.
[5]:
design_df = pd.read_csv(design_mat_path, index_col=0)
print(design_df.shape)
(49, 40)
Note: design is not necessary when input_expr is Tuple[SCDataset, SCDataset]. Otherwise it is optional.
1.1 Loading data as pd.DataFrame¶
When the input is pd.DataFrame, its row and column should respectively represent the cells and the features (proteins).
[6]:
df_expr = pd.read_csv(expression_mat_path, index_col=0)
df_expr.head()
[6]:
| EGFR | Ruthenium_1 | Ruthenium_2 | Ruthenium_3 | Ruthenium_4 | Ruthenium_5 | Ruthenium_6 | Ruthenium_7 | E-Cadherin | DNA1 | ... | CD45 | CD68 | CD3 | Carbonic Anhydrase IX | Cytokeratin 8/18 | Cytokeratin 7 | Twist | phospho Histone | phospho mTOR | phospho S6 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BaselTMA_SP41_126_X14Y7_1 | 0.281753 | 1.319588 | 0.597380 | 1.782863 | 1.757824 | 1.991857 | 2.580564 | 2.287167 | 1.814309 | 2.261638 | ... | 0.044733 | 0.184805 | 0.000000 | 0.928929 | 0.025526 | 0.043423 | 0.209742 | 0.137454 | 0.572811 | 0.215508 |
| BaselTMA_SP41_126_X14Y7_2 | 0.303016 | 1.319588 | 0.597380 | 1.782863 | 1.757824 | 1.991857 | 2.580564 | 2.287167 | 1.517685 | 1.613060 | ... | 0.046802 | 0.080406 | 0.110806 | 0.752101 | 0.000000 | 0.032056 | 0.108013 | 0.048428 | 0.539647 | 0.655731 |
| BaselTMA_SP41_126_X14Y7_3 | 0.252374 | 1.319588 | 0.597380 | 1.782863 | 1.757824 | 1.991857 | 2.580564 | 2.287167 | 1.246433 | 2.138744 | ... | 0.028499 | 0.203248 | 0.020617 | 0.740759 | 0.083311 | 0.081503 | 0.119058 | 0.063097 | 0.409735 | 0.437845 |
| BaselTMA_SP41_126_X14Y7_4 | 0.397732 | 1.306852 | 0.534496 | 1.678217 | 1.757824 | 1.961430 | 2.528551 | 2.183814 | 1.839785 | 1.816015 | ... | 0.069053 | 0.305200 | 0.060264 | 1.095968 | 0.184603 | 0.131531 | 0.160778 | 0.090666 | 0.305718 | 0.132236 |
| BaselTMA_SP41_126_X14Y7_5 | 0.426352 | 1.173439 | 0.597380 | 1.589303 | 1.389839 | 1.789887 | 2.343743 | 2.123334 | 1.618347 | 1.355214 | ... | 0.233777 | 0.135084 | 0.057195 | 1.427983 | 0.035371 | 0.038448 | 0.014434 | 0.127032 | 0.261205 | 0.157786 |
5 rows × 45 columns
[7]:
a_df = ast.Astir(input_expr=df_expr, marker_dict=marker_dict, design=design_df)
print(a_df)
Astir object with 6 cell types, 4 cell states, and 49 cells.
1.2 Loading data as np.array or torch.tensor¶
When the input is Tuple[Union[np.array, torch.tensor]], List[str], List[str]], the first element np.array or torch.tensor is the input dataset, the second element List[str] is the title of the columns (the names of proteins) and the third element List[str] is the title of the rows (the name of the cells). The length of the second and third list should be equal to the number of columns and rows of the first array.
[9]:
# Load as np.array
np_expr = df_expr.values
features = list(df_expr.columns)
cores = list(df_expr.index)
a_np = ast.Astir(input_expr=(np_expr, features, cores), marker_dict=marker_dict, design=design_df)
print(a_np)
Astir object with 6 cell types, 4 cell states, and 49 cells.
[14]:
# Load as torch.tensor
t_expr = torch.from_numpy(np_expr)
a_t = ast.Astir(input_expr=(t_expr, features, cores), marker_dict=marker_dict, design=design_df)
print(a_t)
Astir object with 6 cell types, 4 cell states, and 49 cells.
1.3 Loading data as SCDataset¶
When the input is Tuple[SCDataset, SCDataset], the first SCDataset should be the cell type dataset and the second SCDataset should be the cell state dataset.
[10]:
type_scd = ast.SCDataset(expr_input=df_expr, marker_dict=marker_dict["cell_types"],
include_other_column=True, design=design_df)
state_scd = ast.SCDataset(expr_input=df_expr, marker_dict=marker_dict["cell_states"],
include_other_column=False, design=design_df)
a_scd = ast.Astir(input_expr=(type_scd, state_scd))
print(a_scd)
Astir object with 6 cell types, 4 cell states, and 49 cells.
2. Loading from csv and yaml files¶
A data reader from_csv_yaml for loading csv and yaml file is provided.
The row of the csv file should represent the information of each single cells and the column of the csv file should represent the expression of each protein in different cells.
[10]:
a_csv = ast.from_csv_yaml(csv_input=expression_mat_path, marker_yaml=yaml_marker_path, design_csv=design_mat_path)
print(a_csv)
Astir object with 6 cell types, 4 cell states, and 49 cells.
Some notes:
The yaml file at
yaml_marker_pathcontains the marker which maps protein features to cell type/state classes. The format should match the description of *marker dictionary.from_csv_yamlreturns anAstirobject.dtypeandrandom_seedare also customizable.dtypeis default totorch.float64andrandom_seedis default to1234.
[11]:
type(a_csv.get_type_dataset().get_exprs())
[11]:
torch.Tensor
[12]:
a_csv.get_type_dataset().get_exprs_df().head()
[12]:
| CD20 | CD3 | CD45 | CD68 | Cytokeratin 14 | Cytokeratin 19 | Cytokeratin 5 | Cytokeratin 7 | Cytokeratin 8/18 | E-Cadherin | Fibronectin | Her2 | Vimentin | pan Cytokeratin | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BaselTMA_SP41_126_X14Y7_1 | 0.207884 | 0.000000 | 0.044733 | 0.184805 | 0.134128 | 0.079956 | 0.178350 | 0.043423 | 0.025526 | 1.814309 | 1.039734 | 0.483007 | 0.444140 | 1.187512 |
| BaselTMA_SP41_126_X14Y7_2 | 0.021506 | 0.110806 | 0.046802 | 0.080406 | 0.026951 | 0.066922 | 0.081147 | 0.032056 | 0.000000 | 1.517685 | 1.147644 | 0.513386 | 0.270070 | 0.749379 |
| BaselTMA_SP41_126_X14Y7_3 | 0.008878 | 0.020617 | 0.028499 | 0.203248 | 0.023515 | 0.186294 | 0.076112 | 0.081503 | 0.083311 | 1.246433 | 0.988906 | 0.633226 | 0.233909 | 1.216521 |
| BaselTMA_SP41_126_X14Y7_4 | 0.053027 | 0.060264 | 0.069053 | 0.305200 | 0.114420 | 0.346273 | 0.164059 | 0.131531 | 0.184603 | 1.839785 | 0.842710 | 0.709272 | 0.542362 | 1.354303 |
| BaselTMA_SP41_126_X14Y7_5 | 0.019127 | 0.057195 | 0.233777 | 0.135084 | 0.055368 | 0.124407 | 0.095323 | 0.038448 | 0.035371 | 1.618347 | 1.073357 | 0.482230 | 0.759944 | 0.629398 |
3. Loading from a directory of csvs and yaml¶
The user can also load the data from a directory of csv files with from_csv_dir_yaml.
In this case, every csv file should represent the expression data from different samples. A design matrix will be generated automatically.
[13]:
a_dir = ast.from_csv_dir_yaml(input_dir=expression_dir_path, marker_yaml=yaml_marker_path)
print(a_dir)
Astir object with 6 cell types, 4 cell states, and 40 cells.
Some notes:
The yaml file at
yaml_marker_pathcontains the marker which maps protein features to cell type/state classes. The format should match the description of *marker dictionary.from_csv_dir_yamlreturns an Astir object.dtypeandrandom_seedare also customizable.dtypeis default totorch.float64andrandom_seedis default to1234.
[14]:
type(a_dir.get_type_dataset().get_exprs())
[14]:
torch.Tensor
[15]:
a_dir.get_type_dataset().get_exprs_df().head()
[15]:
| CD20 | CD3 | CD45 | CD68 | Cytokeratin 14 | Cytokeratin 19 | Cytokeratin 5 | Cytokeratin 7 | Cytokeratin 8/18 | E-Cadherin | Fibronectin | Her2 | Vimentin | pan Cytokeratin | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BaselTMA_SP41_126_X14Y7_1 | 0.207884 | 0.000000 | 0.044733 | 0.184805 | 0.134128 | 0.079956 | 0.178350 | 0.043423 | 0.025526 | 1.814309 | 1.039734 | 0.483007 | 0.444140 | 1.187512 |
| BaselTMA_SP41_126_X14Y7_2 | 0.021506 | 0.110806 | 0.046802 | 0.080406 | 0.026951 | 0.066922 | 0.081147 | 0.032056 | 0.000000 | 1.517685 | 1.147644 | 0.513386 | 0.270070 | 0.749379 |
| BaselTMA_SP41_126_X14Y7_3 | 0.008878 | 0.020617 | 0.028499 | 0.203248 | 0.023515 | 0.186294 | 0.076112 | 0.081503 | 0.083311 | 1.246433 | 0.988906 | 0.633226 | 0.233909 | 1.216521 |
| BaselTMA_SP41_126_X14Y7_4 | 0.053027 | 0.060264 | 0.069053 | 0.305200 | 0.114420 | 0.346273 | 0.164059 | 0.131531 | 0.184603 | 1.839785 | 0.842710 | 0.709272 | 0.542362 | 1.354303 |
| BaselTMA_SP41_126_X14Y7_5 | 0.019127 | 0.057195 | 0.233777 | 0.135084 | 0.055368 | 0.124407 | 0.095323 | 0.038448 | 0.035371 | 1.618347 | 1.073357 | 0.482230 | 0.759944 | 0.629398 |
4. Loading from loom¶
It is also possible to load the data from a loom file with from_loompy_yaml.
[16]:
a_loom = ast.from_loompy_yaml(loom_file=expression_loom_path, marker_yaml=yaml_marker_path,
protein_name_attr="protein", cell_name_attr="cell_name", batch_name_attr="batch")
print(a_loom)
Astir object with 6 cell types, 4 cell states, and 100 cells.
Some notes:
The protein and cell names are taken from
ds.ra[protein_name_attr]andds.ca[cell_name_attr]respectively if specified, andds.ra["protein"]andds.cs["cell_name"]otherwise.If
batch_nameis sepecified, the corresponding column ofds.ca[batch_name_attr]will be assumed as the batch variable and turned into a design matrix. Otherwise it is taken asds.ca["batch"]The yaml file at
yaml_marker_pathcontains the marker which maps protein features to cell type/state classes. The format should match the description of *marker dictionary.from_loom_yamlreturns an Astir object.dtypeandrandom_seedare also customizable.dtypeis default totorch.float64andrandom_seedis default to1234.
[17]:
type(a_loom.get_type_dataset().get_exprs())
[17]:
torch.Tensor
[18]:
a_loom.get_type_dataset().get_exprs_df()
[18]:
| CD20 | CD3 | CD45 | CD68 | Cytokeratin 14 | Cytokeratin 19 | Cytokeratin 5 | Cytokeratin 7 | Cytokeratin 8/18 | E-Cadherin | Fibronectin | Her2 | Vimentin | pan Cytokeratin | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BaselTMA_SP41_44_X2Y7_726 | 0.080173 | 0.010469 | 0.013425 | 0.149373 | 0.128329 | 1.577395 | 0.210581 | 0.661001 | 1.777394 | 2.028177 | 1.606446 | 0.803987 | 0.279106 | 4.026491 |
| BaselTMA_SP41_Liver_X2Y1_1909 | 0.051691 | 0.139216 | 0.061985 | 0.140193 | 0.208142 | 0.129807 | 0.117969 | 0.000000 | 1.211757 | 0.642365 | 0.943650 | 1.488154 | 0.000000 | 0.743843 |
| BaselTMA_SP41_231_X6Y6_10_798 | 0.000000 | 0.078386 | 0.144959 | 0.570016 | 0.158847 | 0.325296 | 0.129998 | 0.000000 | 0.166604 | 0.699211 | 2.967311 | 0.891388 | 1.845164 | 0.137033 |
| BaselTMA_SP41_141_X11Y2_4968 | 0.039043 | 0.028426 | 0.089894 | 0.089386 | 0.075023 | 0.294802 | 0.130921 | 0.105543 | 0.721960 | 1.462543 | 0.607401 | 0.847732 | 0.032395 | 2.527473 |
| BaselTMA_SP41_141_X11Y2_746 | 0.079079 | 0.184354 | 1.174959 | 0.297893 | 0.039844 | 0.177649 | 0.129131 | 0.056974 | 0.017406 | 0.391993 | 1.529043 | 1.196052 | 0.816324 | 0.145410 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| BaselTMA_SP42_25_X3Y2_1178 | 0.110930 | 0.022230 | 0.031842 | 0.076643 | 0.128341 | 0.845475 | 0.036395 | 0.143434 | 1.005111 | 1.917632 | 0.455979 | 0.994131 | 0.314468 | 2.820787 |
| BaselTMA_SP43_272_X11Y3_460 | 0.057730 | 0.124963 | 0.000000 | 0.000000 | 0.000000 | 0.137121 | 0.201029 | 0.000000 | 0.075655 | 0.804087 | 2.755348 | 0.286016 | 1.194052 | 0.000000 |
| BaselTMA_SP42_192_X8Y5_2214 | 0.053447 | 0.080335 | 0.031003 | 0.050570 | 0.095160 | 0.605501 | 0.156250 | 0.896955 | 1.221076 | 1.452352 | 0.302654 | 2.217377 | 0.687913 | 2.132569 |
| BaselTMA_SP41_203_X8Y8_2433 | 0.028729 | 0.030617 | 0.322813 | 1.180702 | 0.081800 | 0.182332 | 0.083335 | 0.037738 | 0.212589 | 1.547722 | 2.593907 | 0.265961 | 0.074016 | 1.381932 |
| BaselTMA_SP41_249_X3Y9_996 | 0.228180 | 0.117249 | 0.509954 | 1.180713 | 0.167626 | 0.107251 | 0.116069 | 0.026734 | 0.265320 | 0.502906 | 1.608899 | 0.579117 | 1.673233 | 1.438507 |
100 rows × 14 columns
5. Loading from anndata¶
We can read in data from the AnnData format, along with a yaml file containing marker information using the from_anndata_yaml function:
[19]:
a_ann = ast.from_anndata_yaml(anndata_file=expression_anndata_path, marker_yaml=yaml_marker_path,
protein_name="protein",cell_name="cell_name", batch_name="batch")
print(a_ann)
Astir object with 6 cell types, 4 cell states, and 10 cells.
Some notes:
The protein and cell names are taken from
adata.var[protein_name]andadata.obs[cell_name]respectively if specified, andadata.var_namesandadata.obs_namesotherwise.If
batch_nameis sepecified, the corresponding column ofadata.varwill be assumed as the batch variable and turned into a design matrix.The yaml file at
yaml_marker_pathcontains the marker which maps protein features to cell type/state classes. The format should match the description of *marker dictionary.from_anndata_yamlreturns an Astir object.dtypeandrandom_seedare also customizable.dtypeis default totorch.float64andrandom_seedis default to1234.
[20]:
type(a_ann.get_type_dataset().get_exprs())
[20]:
torch.Tensor
[21]:
a_ann.get_type_dataset().get_exprs_df()
[21]:
| CD20 | CD3 | CD45 | CD68 | Cytokeratin 14 | Cytokeratin 19 | Cytokeratin 5 | Cytokeratin 7 | Cytokeratin 8/18 | E-Cadherin | Fibronectin | Her2 | Vimentin | pan Cytokeratin | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ZTMA208_slide_11_By5x8_1 | 0.168521 | 0.090277 | 0.271871 | 0.412439 | 0.087354 | 0.155710 | 0.100308 | 0.000000 | 0.096674 | 0.974271 | 2.867470 | 0.552905 | 2.335253 | 1.361075 |
| ZTMA208_slide_11_By5x8_2 | 0.366301 | 0.352614 | 0.284034 | 0.312862 | 0.152354 | 0.508728 | 0.028651 | 0.029904 | 0.749755 | 2.787740 | 2.174494 | 1.046198 | 0.285699 | 2.454543 |
| ZTMA208_slide_11_By5x8_3 | 0.177006 | 0.103808 | 0.150791 | 0.122472 | 0.292241 | 0.634366 | 0.090457 | 0.056627 | 0.446911 | 1.927940 | 2.997043 | 1.020517 | 2.887193 | 2.590460 |
| ZTMA208_slide_11_By5x8_4 | 0.304068 | 0.222802 | 0.219736 | 0.277622 | 0.373870 | 2.212514 | 0.304824 | 0.000000 | 1.904837 | 3.175959 | 1.598163 | 2.269974 | 0.877098 | 4.250308 |
| ZTMA208_slide_11_By5x8_5 | 0.137789 | 0.130010 | 0.105604 | 1.035280 | 0.212105 | 0.144144 | 0.074692 | 0.000000 | 0.000000 | 1.900182 | 2.326346 | 0.610897 | 2.882146 | 0.275225 |
| ZTMA208_slide_11_By5x8_6 | 0.182926 | 0.169596 | 0.270698 | 0.257178 | 0.224863 | 1.143546 | 0.189600 | 0.001542 | 0.650384 | 2.580153 | 1.891692 | 1.724237 | 1.931947 | 2.994441 |
| ZTMA208_slide_11_By5x8_7 | 0.239257 | 0.149007 | 0.351788 | 0.138080 | 0.142505 | 1.415104 | 0.124484 | 0.001245 | 1.091975 | 2.696699 | 1.994174 | 1.796137 | 0.127125 | 3.523499 |
| ZTMA208_slide_11_By5x8_8 | 0.175299 | 0.153332 | 0.215698 | 0.104709 | 0.237387 | 2.190369 | 0.264600 | 0.000000 | 1.457901 | 2.788996 | 1.859896 | 1.726696 | 0.106661 | 4.245234 |
| ZTMA208_slide_11_By5x8_9 | 0.210541 | 0.118273 | 0.146135 | 0.148164 | 0.362226 | 1.267224 | 0.173477 | 0.000000 | 0.842407 | 2.950440 | 1.852758 | 2.183716 | 0.957369 | 3.098247 |
| ZTMA208_slide_11_By5x8_10 | 0.308899 | 0.326121 | 0.224866 | 0.276182 | 0.140240 | 2.032473 | 0.334358 | 0.000000 | 1.503531 | 2.938590 | 2.192502 | 2.312838 | 1.337983 | 4.199266 |
[ ]:
[ ]: